NO-TILL WHEAT LONG-TERM EFFECTS

Lloyd Murdock, Jim Herbek, Jim Martin, John James, and Dottie Call

OBJECTIVE:

The objective of this experiment was to verify the effects of no-till wheat and tilled wheat on the subsequent yield of soybeans and corn planted after wheat in a wheat, double-cropped soybean and corn rotation and measure differences in fertility and physical effects on the soil on a long-term basis.

METHODS:

The experiment is at Princeton, Ky on a Huntington silt loam soil that is moderately well drained. Wheat was planted no-till and with tillage and the tillage plots were chisel plowed and disked twice. The plots were 10 ft x 30 ft. The trial was soil tested each year and fertilizer and lime applied according to University of Kentucky recommendations. N was sidedressed on corn at 150 lb/ac. Soybeans are planted no-till immediately after wheat harvest and no-till corn is planted the following year and wheat (tilled and no-tilled) is again planted after corn harvest.

RESULTS:

Yields of Succeeding Crops

The data (below) indicates that both no-till corn and no-till soybeans tend to yield more (4.8% for soybeans and 5.0% for corn) where the wheat is planted no-till. However, the differences are not always statistically significant, but the trend has been fairly consistent.

These yield differences indicate that changes between the two systems have taken place with time and the changes favor the system which has only no-tillage wheat plantings in it. Research indicates that the reason for the difference is due to residue cover, soil moisture, soil physical changes and more importantly a change in pore size distribution. There are more medium sized pores in the upper few inches of the soil that hold more plant available water.

Soil Changes

There is no difference in the soil density between the systems. This indicates that there was no compaction of significance in either system. The soil strength, as indicated by penetrometer measurements, was higher in the exclusively no-tillage system. This and other soil measurements indicate that the soil structure has changed and has larger aggregates and more medium sized pores than the system that is tilled every second year for wheat planting.

Soil moisture measurements taken during the latter part of the growing season are higher in the true no-till system about half of the years and about the same as tilled the other years. When the soil moisture is higher, corn and soybean yields are higher in the no-till system. In the years when there is no difference in soil moisture, the yields are similar. The no-tilled soil can hold more plant available water but the rain must fall at the proper time for the advantage to express itself. In some years, it does and others it does not.

SUMMARY AND CONCLUSIONS:

A true no-tillage system seems to have a favorable effect on the corn and soybean crops grown in rotation with the no-till wheat. When no-till wheat was grown, the no-till corn and soybeans had 5.0 and 4.8% greater yields, respectively, than when these crops were grown after tilled wheat. The soil changes include larger aggregates and more medium pores which result in more plant available moisture for these crops.

EFFECT OF WHEAT TILLAGE SYSTEMS ON THE YIELD OF SUCCEEDING CROPS Year Wheat Tillage System No-Till Conventional Soybeans (bu/ac) 2002 30.7 26.8** 2001 35.3 34.1 N.S.* 2000 45.6 42.9 N.S. 1999 14.9 15.4 N.S. 1998 16.5 15.8 N.S. 1997 45.1 42.7 N.S. 54.5 1996 50.8 N.S. 1995 24.4 22.2 N.S. 1994 49.5 51.6 ** 35.2 33.6 Average

EFFECT OF WHEAT TILLAGE SYSTEMS ON THE YIELD OF SUCCEEDING CROPS

Year	Wheat Tillage System	
	No-Till	Conventiona
	Co	rn <i>(bu/ac)</i>
2002	136.0	135.6 N.S.
2001	208.3	215.1 N.S.
2000	169.5	170.7 N.S.
1999	196.0	165.7 **
1998	203.7	190.2 **
1997	211.9	199.3 **
1996	Harvest Data Lost	
1995	186.0	191.0 N.S
1994	206.0	178.0 **
Average	189.7	180.7

^{*} N.S. means no significantly statistical differences.

^{*} N.S. means no significantly statistical differences.

^{**} Statistically different at the 0.1% level.

^{**} Statistically different at the 0.1% level.